Navier Stoke Fluid Simulation

Developer
Size
8,584 Kb
Views
8,096

How do I make an navier stoke fluid simulation?

What is a navier stoke fluid simulation? How do you make a navier stoke fluid simulation? This script and codes were developed by Endre Simo on 28 November 2022, Monday.

Navier Stoke Fluid Simulation Previews

Navier Stoke Fluid Simulation - Script Codes HTML Codes

<!DOCTYPE html>
<html >
<head> <meta charset="UTF-8"> <title>Navier Stoke Fluid Simulation</title> <link rel="stylesheet" href="css/style.css">
</head>
<body> <div class="wrapper"> <div class="context"></div>
</div>
<div id="gui"></div>
<script> function getIEVersion() { var rv = -1; // Return value assumes failure. if (navigator.appName == 'Microsoft Internet Explorer') { var ua = navigator.userAgent; var re = new RegExp("MSIE ([0-9]{1,}[\.0-9]{0,})"); if (re.test(ua) != null) rv = parseFloat( RegExp.$1 ); } return rv; } function checkVersion() { var ver = getIEVersion(); if ( ver != -1 ) { if (ver <= 9.0) { document.body.innerHTML = ""; document.body.innerHTML = "<p class='no-canvas'>" + "You need a <a href='https://www.google.com/chrome'>modern browser</a> to view this experiment." + "</p>"; } } } checkVersion();
</script> <script src='https://cdnjs.cloudflare.com/ajax/libs/dat-gui/0.5/dat.gui.min.js'></script> <script src="js/index.js"></script>
</body>
</html>

Navier Stoke Fluid Simulation - Script Codes CSS Codes

@import url(https://fonts.googleapis.com/css?family=Roboto+Condensed:300);
@import url(https://fonts.googleapis.com/css?family=Lemon);
html, body { width: 100%; height: 100%; overflow: hidden; background: #111; margin: 0; padding: 0; -webkit-user-select: none; -moz-user-select: none; -khtml-user-select: none; user-select: none;
}
/*******************************
* Main display
********************************/
div#main { position:relative!important; display: block!important; width: 900px!important; height: 600px!important; width: 100%; margin: 0 auto; border: 1px solid #222; -webkit-border-radius: 2px; -moz-border-radius: 2px; -ms-border-radius: 2px; -o-border-radius: 2px; border-radius: 2px; -webkit-box-shadow: 0px 2px 17px rgba(0,0,0,.80), inset 0 0 15px 15px rgba(5,5,5,.2); -moz-box-shadow: 0px 2px 17px rgba(0,0,0,.80), inset 0 0 15px 15px rgba(5,5,5,.2); box-shadow: 0px 2px 17px rgba(0,0,0,.80), inset 0 0 15px 15px rgba(5,5,5,.2);
}
div.context { position:realtive; width: 820px; height: 520px; margin: 0 auto; border: 1px solid #222; -webkit-border-radius: 2px; -moz-border-radius: 2px; -ms-border-radius: 2px; -o-border-radius: 2px; border-radius: 2px; -webkit-box-shadow: 0px 2px 17px rgba(0,0,0,.80), inset 0 0 15px 15px rgba(5,5,5,.2); -moz-box-shadow: 0px 2px 17px rgba(0,0,0,.80), inset 0 0 15px 15px rgba(5,5,5,.2); box-shadow: 0px 2px 17px rgba(0,0,0,.80), inset 0 0 15px 15px rgba(5,5,5,.2);
}
div.wrapper { position: absolute; width: 100%; margin: 0; padding: 0; top: 60px;
}
.context #canvas { position: relative; width: 800px; height: 500px; left: 10px; top: 10px;
}
#gui { position: absolute; right: 100px; top :0;
}
.no-canvas {	color: #999999;	font-size: 24px;	text-align: center;	margin-top: 150px;
}

Navier Stoke Fluid Simulation - Script Codes JS Codes

/** * created by Simo Endre * @simo_endre */
var FS = FS || { REVISION : '01'};
FS.Solver = (function() { // Private variables var _NX, _NY, _NX2, _NY2, _invNumCells, _dt, _isRGB, _solverIterations, _colorDiffusion, _doVorticityConfinement; var wrap_x = false; var wrap_y = false; var _visc, _fadeSpeed, _avgDensity, _uniformity, _avgSpeed; var temp = 0; // Constants var FLUID_DEFAULT_NX = 50, FLUID_DEFAULT_NY = 50, FLUID_DEFAULT_DT = 0.1, FLUID_DEFAULT_VISC = 0.00012, FLUID_DEFAULT_COLOR_DIFUSION = 0.1, FLUID_DEFAULT_FADESPEED = 0.0014, FLUID_DEFAULT_SOLVER_ITERATION = 4, FLUID_DEFAULT_VORTICITY_CONFINEMENT = false; var self; function FSolver() { // Public variales this.width = 0; this.height = 0; this.numCells = 0; self = this; this.__defineGetter__('wrapX', function() { return wrap_x; }); this.__defineGetter__('wrapY', function() { return wrap_y; });	this.__defineGetter__('fadeSpeed', function() { return _fadeSpeed; });	this.__defineGetter__('solverIterations', function() { return _solverIterations; }); this.__defineSetter__('rgb', function(value) { _isRGB = value; }); this.__defineSetter__('fadeSpeed', function(value) { _fadeSpeed = value; });	this.__defineSetter__('solverIterations', function(value) { _solverIterations = value; }); this.__defineSetter__('viscosity', function(value) { _visc = value; }); this.__defineSetter__('deltaT', function(value) { _dt = value; }); this.__defineSetter__('vorticityConfinement', function(value) { _doVorticityConfinement = value; }); } FSolver.prototype.mainSolver = function(NX, NY) { setup(NX, NY); this.reset(); }; FSolver.prototype.reset = function() { if (typeof Float32Array == null || typeof Float32Array == "undefined") Float32Array = Array; this.r = new Float32Array(this.numCells); this.g = new Float32Array(this.numCells); this.b = new Float32Array(this.numCells); this.u = new Float32Array(this.numCells); this.v = new Float32Array(this.numCells); this.rOld = new Float32Array(this.numCells); this.gOld = new Float32Array(this.numCells); this.bOld = new Float32Array(this.numCells); this.uOld = new Float32Array(this.numCells); this.vOld = new Float32Array(this.numCells); this.curl_abs = new Float32Array(this.numCells); this.curl_orig = new Float32Array(this.numCells); this.density = new Float32Array(this.numCells); this.densityOld = new Float32Array(this.numCells); this.source = new Float32Array(this.numCells); temp = new Float32Array(this.numCells); var i = this.numCells; while(i-- > -1) { this.r[i] = this.rOld[i] = this.g[i] = this.gOld[i] = this.b[i] = this.bOld[i] = 0; this.u[i] = this.uOld[i] = this.v[i] = this.vOld[i] = 0; this.curl_abs[i] = this.curl_orig[i] = 0; this.density[i] = this.densityOld[i] = 0; this.source[i] = 0; } }; FSolver.prototype.updateDensity = function() { addDensitySource(this.density, this.densityOld); if (_doVorticityConfinement) { calcVorticityConfinement(this.uOld, this.vOld); } diffuse(0, this.densityOld, this.density, 0); advect(0, this.density, this.densityOld, this.u, this.v); } FSolver.prototype.updateVelocity = function() { this.addCellVelocity(); this.SWAP('uOld', 'u'); diffuse(1, this.u, this.uOld, _visc); this.SWAP('vOld', 'v'); diffuse(2, this.v, this.vOld, _visc); project(this.u, this.v, this.uOld, this.vOld); this.SWAP('uOld', 'u'); this.SWAP('vOld', 'v'); advect(1, this.u, this.uOld, this.uOld, this.vOld); advect(2, this.v, this.vOld, this.uOld, this.vOld); project(this.u, this.v, this.uOld, this.vOld); } FSolver.prototype.getIndexForCellPosition = function(i, j) { i = (i < 1) ? 1 : ((i > _NX) ? _NX : i); j = (j < 1) ? 1 : ((j > _NY) ? _NY : i); return FLUID_IX(i, j); }; FSolver.prototype.getIndexForNormalizedPosition = function(x, y) { return this.getIndexForCellPosition(parseInt(x * _NX2), parseInt(y * _NY2)); }; FSolver.prototype.setWrap = function(x, y) { x = x || false; y = y || false; wrap_x = x; wrap_y = y; }; FSolver.prototype.SWAP = function(x0, x) { var tmp = this[x0]; this[x0] = this[x]; this[x] = tmp; } FSolver.prototype.addCellVelocity = function() { var size = self.numCells; while(size-- > -1) { if (isNaN(self.u[size])) continue; self.u[size] += _dt * self.uOld[size]; if (isNaN(self.v[size])) continue; self.v[size] += _dt * self.vOld[size]; } }	FSolver.prototype.getDensity = function(x, y) {	return this.density[(x + 1) + (y + 1) * _NY];	}; // Private functions function setup(NX, NY) { _dt = FLUID_DEFAULT_DT; _visc = FLUID_DEFAULT_VISC; _fadeSpeed = FLUID_DEFAULT_FADESPEED; _solverIterations = this.solverIterations; _colorDiffusion = FLUID_DEFAULT_COLOR_DIFUSION; _doVorticityConfinement = FLUID_DEFAULT_VORTICITY_CONFINEMENT; _NX = NX; _NY = NY; _NX2 = _NX + 2; // cells + extra boundary cells _NY2 = _NY + 2; self.numCells = _NX2 * _NY2; _invNumCells = 1.0 / self.numCells; self.width = _NX2; self.height = _NY2; _isRGB = false; } function addDensitySource(x, x0) { var size = self.numCells; while(size-- > -1) { x[size] += _dt * x0[size]; } } function addSourceRGB() { var size = self.numCells; while(size-- > -1) { if (isNaN(self.r[size])) continue; self.r[size] += _dt * self.rOld[size]; if (isNaN(self.g[size])) continue; self.g[size] += _dt * self.gOld[size]; if (isNaN(self.b[size])) continue; self.b[size] += _dt * self.bOld[size]; } } function diffuse(bound, c, c0, _diff) { var a = _dt * _diff * _NX * _NY; linearSolver(bound, c, c0, a, 1.0 + 4 * a); } function diffuseUV(bound, _diff) { var a = _dt * _diff * _NX * _NY; linearSolverUV(bound, a, 1.0 + 4 * a); } function diffuseRGB(_diff) { var a = _dt * _diff * _NX * _NY; linearSolverRGB( a, 1.0 + 4 * a); } function calcVorticityConfinement(x, y) { var i, j, index, dx, dy, av, length; for (j = _NY; j > 0; --j) { index = FLUID_IX(_NX, j); for (i = _NX; i > 0; --i) { dx = self.u[parseInt(index + _NX2)] - self.u[parseInt(index - _NX2)]; dy = self.v[parseInt(index + 1)] - self.v[parseInt(index - 1)]; av = (dy - dx) * 0.5; self.curl_orig[parseInt(index)] = av; self.curl_abs[parseInt(index)] = (av < 0) ? -av : av; --index; } } for (j = _NY-1; j > 1; --j) { index = FLUID_IX(_NX-1, j); for (i = _NX-1; i > 1; --i) { dx = self.curl_abs[parseInt(index + 1)] - self.curl_abs[parseInt(index - 1)]; dy = self.curl_abs[parseInt(index + _NX2)] - self.curl_abs[parseInt(index - _NX2)]; length = Math.sqrt(dy * dy + dx * dx) + 0.0001; length = 2 / length; dx *= length; dy *= length; av = self.curl_orig[parseInt(index)]; y[parseInt(index)] = dx * av; x[parseInt(index)] = dy * -av; --index; } } } function fadeR() { var holdAmount = 1 - _fadeSpeed; var totalDeviations = 0; var currentDeviation = 0; var i; _avgDensity = 0; _avgSpeed = 0; for (i = 0; i < self.numCells; i++) { self.uOld[i] = 0; self.vOld[i] = 0; self.rOld[i] = 0; _avgSpeed = self.u[i] * self.u[i] + self.v[i] * self.v[i]; var density = Math.min(1.0, self.r[i]); _avgDensity += density; // calc deviation for uniformity currentDeviation = density - _avgDensity; totalDeviations += currentDeviation * currentDeviation; // fade out old self.r[i] = density * holdAmount; } _avgDensity *= _invNumCells; _uniformity = 1.0 / (1 + totalDeviations * _invNumCells); // 0: very wide distribution, 1: very uniform } function fadeRGB() { var holdAmount = 1 - _fadeSpeed; var totalDeviations = 0; var currentDeviation = 0; _avgDensity = 0; _avgSpeed = 0; for (var i = 0; i < self.numCells; i++) { self.uOld[i] = 0; self.vOld[i] = 0; self.rOld[i] = 0; self.gOld[i] = 0; self.bOld[i] = 0; _avgSpeed = self.u[i] * self.u[i] + self.v[i] * self.v[i]; var dR = Math.min(1.0, self.r[i]); var dG = Math.min(1.0, self.g[i]); var dB = Math.min(1.0, self.b[i]); var density = Math.max(dR, Math.max(dG, dB)); _avgDensity += density; currentDeviation = density - _avgDensity; // calc deviation for uniformity totalDeviations += currentDeviation * currentDeviation; // fade out old self.r[i] = dR * holdAmount; self.g[i] = dG * holdAmount; self.b[i] = dB * holdAmount; } _avgDensity *= _invNumCells; _avgSpeed *= _invNumCells; _uniformity = 1.0 / (1+ totalDeviations * _invNumCells); // 0: very wide distribution, 1: very uniform } function advect(bound, _d, d0, du, dv) { var i, j, i0, j0, i1, j1; var x, y, s0, t0, s1, t1, dt0, dt1; dt0 = _dt * _NX; dt1 = _dt * _NY; for (j = _NY; j > 0; --j) { for (i = _NX; i > 0; --i) { x = i - dt0 * du[FLUID_IX(i, j)]; y = j - dt1 * dv[FLUID_IX(i, j)]; if (x > _NX + 0.5) x = _NX + 0.5; if (x < 0.5) x = 0.5; i0 = parseInt(~~x); i1 = i0 + 1; if (y > _NY + 0.5) y = _NY + 0.5; if (y < 0.5) y = 0.5; j0 = parseInt(~~y); j1 = j0 + 1; s1 = x - i0; s0 = 1 - s1; t1 = y - j0; t0 = 1 - t1; _d[FLUID_IX(i, j)] = s0 * (t0 * d0[FLUID_IX(i0, j0)] + t1 * d0[FLUID_IX(i0, j1)]) + s1 * (t0 * d0[FLUID_IX(i1, j0)] + t1 * d0[FLUID_IX(i1, j1)]); } } setBoundary(bound, _d); } function advectRGB(du, dv) { var i, j, i0, j0, i1, j1; var x, y, s0, t0, s1, t1, dt0x, dt0y; var index; dt0x = _dt * _NX; dt0y = _dt * _NY; for (j = _NY; j > 0; --j) { for (i = _NX; i > 0; --i) { index = FLUID_IX[i, j]; x = i - dt0x * du[FLUID_IX(i, j)]; y = j - dt0y * dv[FLUID_IX(i, j)]; if (x > _NX + 0.5) x = _NX + 0.5; if (x < 0.5) x = 0.5; i0 = parseInt(x); i1 = i0 + 1; if (y > _NY + 0.5) y = _NY + 0.5; if (y < 0.5) y = 0.5; j0 = parseInt(y); j1 = j0 + 1; s1 = x - i0; s0 = 1 - s1; t1 = y - j0; t0 = 1 - t1; j0 = i0 + _NX2; io = FLUID_IX(i0, j0); self.r[index] = s0 * (t0 * self.rOld[i0] + t1 * self.rOld[j0]) + s1 * (t0 * self.rOld[i1] + t1 * self.rOld[j0+1]); self.g[index] = s0 * (t0 * self.gOld[i0] + t1 * self.gOld[j0]) + s1 * (t0 * self.gOld[i1] + t1 * self.gOld[j0+1]); self.b[index] = s0 * (t0 * self.bOld[i0] + t1 * self.bOld[j0]) + s1 * (t0 * self.bOld[i1] + t1 * self.bOld[j0+1]); } } setBoundaryRGB(); } function project(u, v, p, div) { var i, j, index; var h = - 0.5 / _NX; for (j = _NY; j > 0; --j) { index = FLUID_IX(_NX, j); for (i = _NX; i > 0; --i) { div[index] = h * (u[parseInt(index+1)] - u[parseInt(index-1)] + v[parseInt(index + _NX2)] - v[parseInt(index - _NX2)] ); p[index] = 0; --index; } } setBoundary(0, div); setBoundary(0, p); linearSolver(0, p, div, 1, 4); for (j = _NY; j > 0; --j) { index = FLUID_IX(_NX, j); for (i = _NX; i > 0; --i) { u[index] -= 0.5 * _NX * (p[parseInt(index+1)] - p[parseInt(index-1)]); v[index] -= 0.5 * _NY * (p[parseInt(index + _NX2)] - p[parseInt(index - _NX2)]); --index; } } setBoundary(1, u); setBoundary(2, v); } function linearSolver(bound, x, x0, a, c) { var i, j, k, index; if (a == 1 && c == 4) { for (k = 0; k < _solverIterations; k++) { for (j = _NY; j > 0; --j) { index = FLUID_IX(_NX, j); for (i = _NX; i > 0; --i) { x[index] = ( (x[parseInt(index-1)] + x[parseInt(index+1)] + x[parseInt(index - _NX2)] + x[parseInt(index + _NX2)]) + x0[parseInt(index)]) * .25; --index; } } setBoundary(bound, x); } } else { c = 1 / c; for (k = 0; k < _solverIterations; k++) { for (j = _NY; j > 0; --j) { index = FLUID_IX(_NX, j); for (i = _NX; i > 0; --i) { x[index] = (a * (x[parseInt(index-1)] + x[parseInt(index+1)] + x[parseInt(index - _NX2)] + x[parseInt(index + _NX2)]) + x0[parseInt(index)]) * c; --index; } } setBoundary(bound, x); } } } function linearSolverRGB(a, c) { var i, j, k, index, index2, index3; c = 1 / c; for (k = 0; k < _solverIterations; ++k) { for (j = _NY; j > 0; --j) { index = FLUID_IX(_NX, j); index2 = index - _NX2; index3 = index + _NX2; for (i = _NX; i > 0; --i) { self.r[index] = ( (self.r[parseInt(index-1)] + self.r[parseInt(index+1)] + self.r[parseInt(index2)] + self.r[parseInt(index3)]) * a + self.rOld[index] ) * c; self.g[index] = ( (self.g[parseInt(index-1)] + self.g[parseInt(index+1)] + self.g[parseInt(index2)] + self.g[parseInt(index3)]) * a + self.gOld[index] ) * c; self.b[index] = ( (self.b[parseInt(index-1)] + self.b[parseInt(index+1)] + self.b[parseInt(index2)] + self.b[parseInt(index3)]) * a + self.bOld[index] ) * c; --index; --index2; --index3; } } setBoundaryRGB(); } } function linearSolverUV(a, c) { var i, j, k, index; c = 1 / c; for (k = 0; k < _solverIterations; ++k) { for (j = _NY; j > 0; --j) { index = FLUID_IX(_NX, j); for (i = _NX; i > 0; --i) { self.u[index] = ( (self.u[parseInt(index-1)] + self.u[parseInt(index+1)] + self.u[parseInt(index - _NX2)] + self.u[parseInt(index + _NX2)]) * a + self.uOld[index] ) * c; self.v[index] = ( (self.v[parseInt(index-1)] + self.v[parseInt(index+1)] + self.v[parseInt(index - _NX2)] + self.v[parseInt(index + _NX2)]) * a + self.vOld[index] ) * c; --index; } } setBoundary(1, self.u); setBoundary(2, self.v); } } function setBoundary(bound, x) { var dst1, dst2, src1, src2, i; var step = FLUID_IX(0, 1) - FLUID_IX(0, 0); dst1 = FLUID_IX(0, 1); src1 = FLUID_IX(1, 1); dst2 = FLUID_IX(_NX+1, 1); src2 = FLUID_IX(_NX, 1); if (wrap_x) { src1 ^= src2; src2 ^= src1; src1 ^= src2; } if (bound == 1 && !wrap_x) { for (i = _NY; i > 0; --i) { x[dst1] = -x[src1]; dst1 += step; src1 += step; x[dst2] = -x[src2]; dst2 += step; src2 += step; } } else { for (i = _NY; i > 0; --i) { x[dst1] = x[src1]; dst1 += step; src1 += step; x[dst2] = x[src2]; dst2 += step; src2 += step; } } dst1 = FLUID_IX(1, 0); src1 = FLUID_IX(1, 1); dst2 = FLUID_IX(1, _NY+1); src2 = FLUID_IX(1, _NY); if (wrap_y) { src1 ^= src2; src2 ^= src1; src1 ^= src2; } if (bound == 2 && !wrap_y) { for (i = _NX; i > 0 ; --i) { x[dst1++] = -x[src1++]; x[dst2++] = -x[src2++]; } } else { for (i = _NX; i > 0; --i) { x[dst1++] = x[src1++]; x[dst2++] = x[src2++]; } } x[FLUID_IX(0, 0)] = .5 * (x[FLUID_IX(1, 0)] + x[FLUID_IX(0, 1)]); x[FLUID_IX(0, _NY+1)] = .5 * (x[FLUID_IX(1, _NY+1)] + x[FLUID_IX(0, _NY)]); x[FLUID_IX(_NX+1, 0)] = .5 * (x[FLUID_IX(_NX, 0)] + x[FLUID_IX(_NX+1, _NX)]); x[FLUID_IX(_NX+1, _NY+1)] = .5 * (x[FLUID_IX(_NX, _NY+1)] + x[FLUID_IX(_NX+1, _NY)]); } function setBoundaryRGB() { if (!wrap_x && !wrap_y) return; var i, src1, src2, dst1, dst2; var step = FLUID_IX(0, 1) - FLUID_IX(0, 0); if (wrap_x) { dst1 = FLUID_IX(0, 1); src1 = FLUID_IX(1, 1); dst2 = FLUID_IX(_NX+1, 1); src2 = FLUID_IX(_NX, 1); src1 ^= src2; src2 ^= src1; src1 ^= src2; for (i = _NY; i > 0 ; --i) { self.r[dst1] = self.r[src1]; self.g[dst1] = self.g[src1]; self.b[dst1] = self.b[src1]; dst1 += step; src1 += step; self.r[dst2] = self.r[src2]; self.g[dst2] = self.g[src2]; self.b[dst2] = self.b[src2]; dst2 += step; src2 += step; } } if (wrap_y) { dst1 = FLUID_IX(1, 0); src1 = FLUID_IX(1, 1); dst2 = FLUID_IX(1, _NY+1); src2 = FLUID_IX(1, _NY); src1 ^= src2; src2 ^= src1; src1 ^= src2; for (i = _NX; i > 0 ; --i) { self.r[dst1] = self.r[src1]; self.g[dst1] = self.g[src1]; self.b[dst1] = self.b[src1]; ++dst1; ++src1; self.r[dst2] = self.r[src2]; self.g[dst2] = self.g[src2]; self.b[dst2] = self.b[src2]; ++dst2; ++src2; } } } function swapRGB() { temp = self.r; self.r = self.rOld; self.rOld = temp; temp = self.g; self.g = self.gOld; self.gOld = temp; temp = self.b; self.b = self.bOld; self.bOld = temp; } function FLUID_IX(i, j) { return (parseInt(i + _NX2 * j)); //get the index of a two dimensional array } return FSolver;
})();
(function() { var lastTime = 0; var vendors = ['ms', 'moz', 'webkit', 'o']; for(var x = 0; x < vendors.length && !window.requestAnimationFrame; ++x) { window.requestAnimationFrame = window[vendors[x]+'RequestAnimationFrame']; window.cancelAnimationFrame = window[vendors[x]+'CancelAnimationFrame'] || window[vendors[x]+'CancelRequestAnimationFrame']; } if (!window.requestAnimationFrame) window.requestAnimationFrame = function(callback, element) { var currTime = new Date().getTime(); var timeToCall = Math.max(0, 16 - (currTime - lastTime)); var id = window.setTimeout(function() { callback(currTime + timeToCall); }, timeToCall); lastTime = currTime + timeToCall; return id; }; if (!window.cancelAnimationFrame) window.cancelAnimationFrame = function(id) { clearTimeout(id); };
}());
// Private Constants
var FLUID_WIDTH = 128;
var NUM_PARTICLES = 4;
var VMAX = 0.013;
var VMAX2 = VMAX * VMAX;
var ADD_DENSITY = 60000;
var VEL_MUL = 40;
// Private variables
var mainCanvas = document.createElement('canvas');
mainCanvas.setAttribute('width', '900');
mainCanvas.setAttribute('height', '500');
mainCanvas.setAttribute('id', 'canvas');
var mainContext = document.getElementsByClassName('context')[0];
mainContext.appendChild(mainCanvas);
var canvasWidth = mainCanvas.width;
var canvasHeight = mainCanvas.height;
var sx = mainCanvas.width / mainCanvas.offsetWidth;
var sy = mainCanvas.height / mainCanvas.offsetHeight;
var cx = 0, cy = 0;
mainCanvas.width = FLUID_WIDTH;
mainCanvas.height = FLUID_WIDTH;
var ctx = mainCanvas.getContext('2d');
var sw = mainCanvas.width;
var sh = mainCanvas.height;
var isw = 1 / sw;
var ish = 1 / sh;
var mx = 4.0;
var my = 0;
var aspectRatio = sw * ish;
var dx, dy;
var lastX, lastY;
// Initialize GUI values
var GUI = new function() { this.viscosity = 0.00006;	this.fadeSpeed = 0.0012; this.densityMul = 0.98; this.density = ADD_DENSITY;	this.velMul = VEL_MUL; this.fluidWidth = FLUID_WIDTH;	this.numParticles = NUM_PARTICLES;	this.solverIterations = 4; this.doVorticity = false; return this;
}
var partList = new Array();
var fSolver = new FS.Solver(); fSolver.mainSolver(GUI.fluidWidth, parseInt(GUI.fluidWidth * sh / sw));
fSolver.viscosity = GUI.viscosity;	fSolver.fadeSpeed = GUI.fadeSpeed;	fSolver.solverIterations = GUI.solverIterations;
fSolver.vorticityConfinement = GUI.doVorticity;
var fsWidth = fSolver.width;
var fsHeight = fSolver.height;
var image = ctx.createImageData(fsWidth, fsHeight);
var data32 = new Uint32Array(image.data.buffer);
var frameCount = 0;
var drawMode = 0, drawParticles = true, drawFluid = false, drawLines = false, mouseDown = false, addVel = true, add = true;
var counter = 0;
var gui = new dat.GUI({autoPlace:false, width: 270, align: "left"});
gui.domElement.style.position = 'relative';
gui.domElement.style.top = '60px';
gui.domElement.style.left = '80px';
var datGUI = document.getElementById('gui');
datGUI.appendChild(gui.domElement);
var gs = gui.addFolder('General settings');
gs.open();
gs.add(GUI,'viscosity').min(0.00001).max(0.001).step(0.00001).name('Viscosity').onChange(function(value) { fSolver.viscosity = value });
gs.add(GUI,'fadeSpeed').min(0.0006).max(0.009).step(0.0001).name('Fade speed').onChange(function(value) { fSolver.fadeSpeed = value });
gs.add(GUI,'density').min(10000).max(90000).step(100).name('Density').onChange(function() { fSolver.updateDensity() });
gs.add(GUI,'velMul').min(10).max(100).step(1).name('Velocity').onChange(function() { fSolver.addCellVelocity() });
gs.add(GUI,'densityMul').min(0.7).max(1.1).step(0.1).name('Density Mult.').onChange(function(value) { GUI.densityMul = value });
gs.add(GUI,'solverIterations').min(3).max(10).step(1).name('Solver Iteration').onChange(function(value) { GUI.solverIterations = fSolver.solverIterations = value;} );
gs.add(GUI,'doVorticity').onFinishChange(function(e) { if (GUI.doVorticity) { fSolver.vorticityConfinement = true; } else { fSolver.vorticityConfinement = false; }
});
gui.add(fSolver, 'reset').name('Clear');
render();
function draw() { var i=0, j; ctx.fillStyle = '#000';	ctx.fillRect(0, 0, mainCanvas.width, mainCanvas.height);	ctx.fill(); for (; i < fSolver.numCells; i++) { j = fSolver.density[i]; if (j > 255) j = 255; data32[i] = (255 << 24) | // alpha, 255 = 100% opacity (j << 16) | // blue (j << 8) | // green j; // red image.data[i * 4 + 0] = j; image.data[i * 4 + 1] = j; image.data[i * 4 + 2] = j; image.data[i * 4 + 3] = 255; } ctx.putImageData(image, 0, 0);
}
function getScrollX() { return window.pageXOffset || window.document.documentElement.scrollLeft;
}
function getScrollY() { return window.pageYOffset || window.document.documentElement.scrollTop;
}
function getMousePos(event) { event.preventDefault(); dx = event.pageX - (getScrollX() + mainCanvas.getBoundingClientRect().left)- lastX; dy = event.pageY - (getScrollY() + mainCanvas.getBoundingClientRect().top) - lastY; lastX = event.pageX - (getScrollX() + mainCanvas.getBoundingClientRect().left) - cx; lastY = event.pageY - (getScrollY() + mainCanvas.getBoundingClientRect().top) - cy; return { x: lastX, y: lastY }
}
function getTouchPos(event) { event.preventDefault(); dx = event.changedTouches[0].pageX - (getScrollX() + mainCanvas.getBoundingClientRect().left) - lastX; dy = event.changedTouches[0].pageY - (getScrollY() + mainCanvas.getBoundingClientRect().top) - lastY; lastX = event.changedTouches[0].pageX - (getScrollX() + mainCanvas.getBoundingClientRect().left); lastY = event.changedTouches[0].pageY - (getScrollY() + mainCanvas.getBoundingClientRect().top); lastX = lastX > 0 ? (lastX < canvasWidth ? lastX : canvasWidth) : 0; lastY = lastY > 0 ? (lastY < canvasHeight ? lastY : canvasHeight) : 0; return { x: lastX, y: lastY }
}
function render() { var id = requestAnimationFrame(render); loop();
}
function uiFeedback() { var x = ~~(lastX / GUI.numParticles); var y = ~~(lastY / GUI.numParticles); if (x > fSolver.width || y > fSolver.height) return; var c = getIndexForCellPosition(x, y); if (!mouseDown) { if (dx==undefined) return; return; } if (addVel) { fSolver.uOld[c] += dx / GUI.numParticles * GUI.velMul; fSolver.vOld[c] += dy / GUI.numParticles * GUI.velMul; } // TODO for more velocity and density, we could pick a radius around the mouse for more fluid injection. if (add) { fSolver.source[c] += GUI.density; }
}
function getIndexForCellPosition(i,j) { return i + (fsWidth) * j;
}
mainCanvas.addEventListener('mousemove', onMouseMove);
mainCanvas.addEventListener('mousedown', function(event) { event.preventDefault(); cx = event.pageX - (getScrollX() + mainCanvas.getBoundingClientRect().left) - lastX; cy = event.pageY - (getScrollY() + mainCanvas.getBoundingClientRect().top) - lastY; mouseDown = true;
});
mainCanvas.addEventListener('mouseup', function(event) { event.preventDefault(); mouseDown = false;
});
// Mobile devices touch events
mainCanvas.addEventListener('touchstart', function(event) { event.preventDefault(); lastX = event.changedTouches[0].pageX - (getScrollX() + mainCanvas.getBoundingClientRect().left); lastY = event.changedTouches[0].pageY - (getScrollY() + mainCanvas.getBoundingClientRect().top); mouseDown = true;
});
mainCanvas.addEventListener('touchmove', onTouchMove);
mainCanvas.addEventListener('touchend', function(event) { event.preventDefault(); mouseDown = false;
});
function loop() { for (var i=0; i < fSolver.numCells; i++) { fSolver.vOld[i] = 0; fSolver.uOld[i] = 0; fSolver.densityOld[i] = 0; } uiFeedback(); for (var i=0; i < fSolver.numCells; i++) { fSolver.densityOld[i] += fSolver.source[i]; fSolver.source[i] *= GUI.fadeSpeed; // additional code to create dissipatation fSolver.density[i] *= GUI.densityMul; } fSolver.updateVelocity(); fSolver.updateDensity(); draw();
}
function onMouseMove(e) { if (getMousePos(e).y <= 40) return;
}
function onTouchMove(e) { if (getTouchPos(e).y <= 40) return;
}
Navier Stoke Fluid Simulation - Script Codes
Navier Stoke Fluid Simulation - Script Codes
Home Page Home
Developer Endre Simo
Username esimov
Uploaded November 28, 2022
Rating 3.5
Size 8,584 Kb
Views 8,096
Do you need developer help for Navier Stoke Fluid Simulation?

Find the perfect freelance services for your business! Fiverr's mission is to change how the world works together. Fiverr connects businesses with freelancers offering digital services in 500+ categories. Find Developer!

Endre Simo (esimov) Script Codes
Create amazing video scripts with AI!

Jasper is the AI Content Generator that helps you and your team break through creative blocks to create amazing, original content 10X faster. Discover all the ways the Jasper AI Content Platform can help streamline your creative workflows. Start For Free!